A categorical framework for the quantum harmonic oscillator
Jamie Vicary
This paper describes how the structure of the state space of the quantum
harmonic oscillator can be described by an adjunction of categories, that
encodes the raising and lowering operators into a commutative comonoid. The
formulation is an entirely general one in which Hilbert spaces play no special
role. Generalised coherent states arise through the hom-set isomorphisms
defining the adjunction, and we prove that they are eigenstates of the lowering
operators. Surprisingly, generalised exponentials also emerge naturally in this
setting, and we demonstrate that coherent states are produced by the
exponential of a raising morphism acting on the zero-particle state. Finally,
we examine all of these constructions in a suitable category of Hilbert spaces,
and find that they reproduce the conventional mathematical structures.