Deep Learning in Mobile and Wireless Networking: A Survey
The rapid uptake of mobile devices and the rising popularity of mobile
applications and services pose unprecedented demands on mobile and wireless
networking infrastructure. Upcoming 5G systems are evolving to support
exploding mobile traffic volumes, agile management of network resource to
maximize user experience, and extraction of fine-grained real-time analytics.
Fulfilling these tasks is challenging, as mobile environments are increasingly
complex, heterogeneous, and evolving. One potential solution is to resort to
advanced machine learning techniques to help managing the rise in data volumes
and algorithm-driven applications. The recent success of deep learning
underpins new and powerful tools that tackle problems in this space.
In this paper we bridge the gap between deep learning and mobile and wireless
networking research, by presenting a comprehensive survey of the crossovers
between the two areas. We first briefly introduce essential background and
state-of-the-art in deep learning techniques with potential applications to
networking. We then discuss several techniques and platforms that facilitate
the efficient deployment of deep learning onto mobile systems. Subsequently, we
provide an encyclopedic review of mobile and wireless networking research based
on deep learning, which we categorize by different domains. Drawing from our
experience, we discuss how to tailor deep learning to mobile environments. We
complete this survey by pinpointing current challenges and open future
directions for research.