Simple Open-Vocabulary Object Detection with Vision Transformers
Combining simple architectures with large-scale pre-training has led to
massive improvements in image classification. For object detection,
pre-training and scaling approaches are less well established, especially in
the long-tailed and open-vocabulary setting, where training data is relatively
scarce. In this paper, we propose a strong recipe for transferring image-text
models to open-vocabulary object detection. We use a standard Vision
Transformer architecture with minimal modifications, contrastive image-text
pre-training, and end-to-end detection fine-tuning. Our analysis of the scaling
properties of this setup shows that increasing image-level pre-training and
model size yield consistent improvements on the downstream detection task. We
provide the adaptation strategies and regularizations needed to attain very
strong performance on zero-shot text-conditioned and one-shot image-conditioned
object detection. Code and models are available on GitHub.